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Abstract—The average time spent watching online videos
increases every year, across all demographics. Videos are more
engaging and are shared twice as much as other types of media.
However, making or editing such videos can be expensive and
time-consuming. OQur research goal is to propose solutions based
on machine learning and computational aesthetics to automate
steps in the creation and editing of videos that are appealing and
of interest for the viewer.

In this proposal, we discuss three existing works and how
they relate to our research. We first examine how generative
adversarial networks (GANSs) can be used to generate videos and
what are their limitations. Then, we take a look at an example
of data collection and annotation process, allowing training of
models for video aesthetics and message understanding. Finally,
we discuss a framework to navigate GANs’ latent space to
improve aesthetics.

Index Terms—Computational aesthetics, generative models,
generative adversarial networks (GANSs), video generation, video
understanding, aesthetics assessment, latent space navigation.

I. INTRODUCTION
A. Motivations

HY are we interested to automatically generate or

edit videos that are appealing to the viewer? Recent
surveys show that people spend on average 19 hours per
week watching online videos [94], which account for 82%
of all Internet traffic [88]. This duration appears to increase
substantially and regularly every year [92, 94], including
across older demographics [92]. Some marketing study states
that videos are shared twice as much as any other type of
media [94]. Today, when looking at the top-10 smartphone
apps sorted by their estimated revenue, 4 apps directly relate
to videos (YouTube, TikTok, HBO Max, and Disney+) [89]. In
the last months, we have seen companies modifying their app
to display videos more often, such as Instagram and Facebook.
We have also seen companies making announcements of new
video-related products, such as Google launching their Ads
Creative Studio.

B. Research area

Motivated by those facts and the recent research progress in
video generation [3]-[12, 33, 65, §1] and text-to-image gener-
ation [19, 20, 58, 59, 60, 61, 83]-[86, 87], we are interested in
the topic of aesthetics-oriented video generation and editing.
This topic is part of the field of computational aesthetics and
borrows methods from many other fields, including generative
models and automatic aesthetics assessments.

C. Organization of this write-up

To provide detailed background on the topic, we discuss
below three existing works. Each of these works illustrates

one main challenge of our research area, namely the challenge
of automatic generation of videos (section II), the challenge
of collecting aesthetics measurements and predicting them
(section III), and finally the challenge of combining video
generation models with aesthetics assessment models (section
IV). The first work, by Munoz et al. [3], proposes a GAN
architecture that can be used to generate videos, focusing on
temporal coherency between consecutive frames. The second
work, by Hussain et al. [2], introduces a dataset of video
advertisements with aesthetics annotations, allowing experi-
ments in training models for automatic message understanding
in advertisements and computational aesthetics. The third
work, by Goetschalckx et al. [I] proposes a framework to
find, inside the latent space of generative models, directions
that correspond to modifications of some aesthetics measures.
Finally, in section V, we expose possible research directions
for our current and future works.

II. GENERATIVE MODELS FOR VIDEOS

In this section, we discuss the subject of video generation
with deep learning techniques. We illustrate it with a work by
Munoz et al.: temporal shift GAN (TSGAN) [3]. This work
proposes an improvement on video-specific architectures of
GANSs. They cleverly integrate into their method the latest
progress in image generation achieved by BigGAN [11] and
confirm that a carefully-design treatment of the temporal di-
mension is required for temporal consistency in the generated
video.

A. Problem statement and background

Overview of main architectures of generative models.
Various architectures of artificial neural networks can be used
for generative tasks. Those models can often be seen, in
probabilistic terms, as learning the distribution of the data
and providing a way to sample new data points from this
distribution. We identify five main classes of architectures of
generative models that are often used in the literature: syn-
thesis through optimization, variational auto-encoders (VAEs),
denoising diffusion probabilistic models (DDPMs), autore-
gressive models (AMs), and generative adversarial networks
(GAN:S).

Synthesis through optimization consists in directly optimiz-
ing the image to maximize some objective, such as being
classified as a banana by a pre-trained classifier. We want
to mention here DeepDream [93], that popularized synthesis
through optimization in 2015. Auto-encoders (AEs) are a class
of architectures made of an encoder and a decoder, converting
a data point (e.g. an image) into a latent code and vice-
versa. The encoder and the decoder are trained jointly to
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minimize the reconstruction error. VAEs regularize the latent
space of AEs, which allows generation using the decoder
[44]. DDPMs consist of models that, in simple terms, are
trained to gradually denoise data, allowing image generation
by gradually denoising an image made of random noise [32,

]. AMs are models that predict the next value of sequential
data. They are widely used in natural language processing
(NLP), predicting the next word/token of a text. AMs can be
used iteratively for generative tasks, predicting words one after
the other for text generation, or predicting the values of pixels
one after the other for image generation [75]. GANs are made
of a discriminator and a generator, which are jointly trained
to distinguish real data from generated data, and to generate
data that cannot be distinguished from real data, respectively
[29].

Each of those five classes of architectures has its own advan-
tages (e.g. realism, no training required, tractable likelihood
computation) and drawbacks (e.g. slow sampling, difficult
training). Those architectures can always be modified to obtain
conditional generation, e.g. conditioning the generation to
some prior constraints or conditioning to a specific class [51].

GANs for videos. Until recently [18], GANs were the
state-of-the-art architecture for image generation, as seen in
the breakthrough models such as Progressive GAN [36],
StyleGANs [37, 38, 39, 40] and BigGAN [I1]. Hence most
progress in video generation was also made using GANS.

In 2016, Vondrick et al. [76] showed that 2D convolutions
of image GANSs can be replaced by 3D convolutions for video
generation, resulting in a video GAN (VGAN). More precisely,
VGAN uses a 2D convolutional neural network (a 2D CNN)
to generate the background of a video, which is assumed to
be constant in this work, and a 3D CNN to generate the time-
dependant foreground video. Temporal GAN (TGAN) [62]
separates the temporal generation from the frames generation
inside the generator network. The video generator (3D CNN)
is replaced by a sequence generator (a 1D CNN) followed
by an image generator (a 2D CNN). The sequence generator
produces a latent code for each frame of the video, and
those latent codes are decoded independently by the image
generator to produce the frames. In 2017, motion-content
GAN (MoCoGAN) [72] added an image discriminator (a 2D
CNN) in addition to the video discriminator (a 3D CNN).
Through this image discriminator, one specifically aims at
making frames extracted from generated videos look realistic.
Their generator also includes a sequence generator (a recurrent
neural network RNN) followed by an image generator (a 2D
CNN), which they respectively interpret as motion generation
and content generation. On another note, in 2018, progressive
VGAN [4] showed that progressive training of GANs [36] is
also effective for video generation. Starting from generation of
4-frame videos of 4 x 4 pixels, network blocks are gradually
added to the generator and the discriminator during the training
procedure of progressive VGAN, to generate 32-frame videos
of 256 x 256 pixels at the end of the training.

Using datasets from action recognition for video gen-
eration. Since the distribution of natural videos in the video
space is extremely complex, the existing works aim to generate
data from the distribution of specific datasets. The training

and evaluation are usually done on relatively small recognition
datasets, on specific domains such as human actions, sports,
or facial expression. For instance, the Weizmann [30] and
UCF101 [67] datasets are human action and sport recognition
datasets, with 93 videos and 9 classes for Weizmann, and 13K
videos and 101 classes for UCF101.

Evaluation of generative models. To evaluate the quality
of generative models, one assesses the quality of the generated
samples. For image GANS, it is common practice to use the
inception score (IS) [63] and the Fréchet inception distance
(FID) [31]. Both metrics use a pretrained image classifier
(Inception v3 [68, 69, 70]). In 2017, the TGAN paper [62]
introduced the video inception score by replacing the Inception
model by a pretrained video classifier. Similarly, in 2018,
Unterthiner et al. [73] introduced the Fréchet video distance
(FVD). We note that the pretrained video classifiers used for
video IS and FVD are 3D CNNs trained for action recognition.

B. Contributions of the paper

The main contribution of the paper is TSGAN, which
is an architecture improvement of existing GANs for video
generation. Additionally, the authors of TSGAN also propose
a new metric to evaluate generative models, as well as a
new dataset allowing a semantic-oriented evaluation of video
generation models.
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Fig. 1. Schema of the TSGAN architecture. Image source from the original
paper with slight modifications.

TSGAN. The authors motivate their work by stating that 3D
CNNs (such as VGAN and Progressive VGAN) treat temporal
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dimension same as spatial dimensions, require fixed-length
videos, and are computationally and data expensive. Therefore,
in the authors’ work, the video generator is composed of
a sequence generator followed by an image generator, in
line with TGAN and MoCoGAN. However, in TGAN and
MoCoGAN, the image generator processes frames completely
independently, which induces low temporal consistency be-
tween frames.

Hence, the image generator should decode frames by shar-
ing some intermediate representations between consecutive
frames. The image generator of TSGAN is a BigGAN, initial-
ized with pretrained weights, therefore including in TSGAN
the latest progress in image generation. However, in two
locations inside the BigGAN architecture, the intermediate
representation of a frame ¢ is replaced by a concatenation of
the intermediate representations of the frames t—1, ¢t and ¢+ 1.
The resulting architecture is depicted in figure 1.

By evaluating their method, the authors showed that they
boost video generation performance compared to the previous
methods, and that this improvement is coming both from
the integration of the recent progress of image generation
(BigGAN backbone) and from the share of intermediate rep-
resentations between consecutive frames.

Symmetric Similarity Score. The authors of TSGAN also
noticed that using IS as metric for evaluation is problematic
since significant changes in the IS did not match qualitative
evaluation. Moreover, the IS fails to capture the intra-class
diversity of the generated samples.

To address IS shortcomings, a new metric to evaluate
generative models is introduced. This metric relies on training
and evaluating a downstream model (e.g. a classifier) on a
real dataset and a dataset generated by the generative model.
It is based on two observations. Firstly, the performance on
the generated dataset of a model trained on the real dataset is
related to the realism of the generated dataset, but unrelated to
the diversity of the generated samples. Indeed, if the evaluation
samples (generated samples) are out-of-domain of the training
data (i.e. nonrealistic), the performance will be low. Secondly,
the performance on the real dataset of a model trained on
the generated dataset is related to both the realism and the
diversity of the generated samples. Indeed, if the generated
samples lack diversity, the properties of some real samples
will be underrepresented in the training data. Contrary to the
IS, this accounts for both inter-class and intra-class diversity.
Those two performances are normalized using the performance
on the real dataset of a model trained on the generated dataset.
They are then combined into a single metric. They found that
this metric better matches their qualitative evaluation and is
more reliable than IS, e.g. to identify per-class mode collapse.

MaisToys. This work also introduces a new dataset, Mais-
Toys, which contains basic clay figure videos, combining 5
shapes, 4 colors and 4 motions. The size, nature and balance
of the dataset is well suited for a semantic-oriented evaluation
of an architecture, e.g. assessing whether a model trained on
3 of the 4 colors generalizes well to the 4" color.

C. Discussion

Remaining challenges in video generation. The state of
the research on video generative models is not yet suited for
downstream applications such as generating a movie. Mostly,
current models, including TSGAN, lack the ability to learn
the full, large and complex, domain of natural videos. While
TSGAN is designed to improve the temporal consistency
of consecutive frames, the long and very long temporal
consistency is not taken into consideration, in TSGAN as
well as other models. Most existing works only produce
low-resolution videos with a low framerate. Yet, we noticed
very recent works showing promising results in those three
directions. Last December, StyleGAN-V [65] showed major
improvements on resolution, framerate, long-term coherency
and quality of generated videos. Last May, CogVideo [33]
showed the possibility to generate videos in the natural domain
through large-scale training. Last June, a work by Brooks et
al. [12] shows the possibility to generate videos with long
temporal consistency.

Possible directions for progress in video generation.
Among the subsequent works on video generation, we also
want to mention here other directions of progress in designing
generative models for videos. One direction is to include
more priors into the generative models, leading for instance
to “3D-aware” models [8] or “dynamics-aware” models [84].
Furthermore, we have seen recently significant progress in
image generation and text-to-image generation. Many recent
models/techniques do not rely solely on GANs to generate
images: VQGAN [24], Craiyon [86] and Google Parti [83]
mix AMs and GANSs to generate images, VQVAE [74] and
OpenAl DALL-E [59] mix AMs and VAEs, CLIPDraw [25]
uses synthesis through optimization, CLIP-GLaSS [27] mixes
synthesis through optimization and GANs, OpenAl DALL-E
2 [58], Google Imagen [01] and Stable Diffusion [60] use
DDPMs, efc. The use of generative models that do not solely
rely on GANs for generation also started to be used for video
generation. For instance, VideoGPT [81] and CogVideo [33]
mix AMs and VAEs to generate videos.

III. AESTHETICS OF VIDEOS: DATA COLLECTION AND
PREDICTION

In this section, we discuss the subject of collecting and
predicting the aesthetics of videos.

We illustrate the subject with a work by Hussain er al.
[2]. This work introduces two datasets of image and video
advertisements as well as corresponding annotations for ad-
vertisements understanding, hence, in broader terms, for com-
putational aesthetics.

A. Problem statement and background

This work relates to our research area for several reasons.
First, the advertisement industry is one possible downstream
application of the fields of computational aesthetics and video
generation/editing. Secondly, it shows how complex assess-
ment of appeal/aesthetics/effectiveness of images and videos
might be. Indeed, it requires non-trivial understanding of
which objects/styles are present, but also how they are shown
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and combined in order to transmit which message/emotion to
the viewer. Thirdly, it gives an example of the data collection
and human annotation procedures, which are necessary in
many research works.

Hussain et al. do not mention the word aesthetics in their
work. They described their work as a new problem of un-
derstanding the messages in ads and decoding their meaning.
However, we use the term computational aesthetics in a
broader manner. Indeed, message understanding is necessary
to achieve high performance of assessing the appeal of videos
(and images), to understand what provoke interest and how
we can use it in videos, to understand how the viewer is
engaged by the video. The fields of message understanding
and computational aesthetics are really imbricated with each
other. Understanding the meaning of videos rely on many
intermediate steps including understanding sentiments and
emotions that are induced, understanding humor. Therefore we
highlight some background works of computational aesthetics
in the next paragraphs.

Emotion models for image aesthetics. The aesthetics of an
image correspond to the emotional/affective state experienced
by someone visualizing that image. Hence, it can be described
using emotion models. According to the literature, there are
two main types of emotion models [85]. They consist in
either a list of supposedly distinct basic emotions (categorical
emotion models) [17, 21, 71] or a dimensional space where
dimensions describe the characteristics of the emotions (di-
mensional emotion models) [10, 34, 56, 78]. Paul Ekman’s
model is one of the most used categorical emotion models.
It lists six basic emotions: anger, surprise/shock, disgust,
joy, fear, sadness/loneliness [21]. Most dimensional models
use a valence dimension and an arousal dimension [56].
Valence describes how pleasant the emotion is and arousal
describes how aroused/stimulated/awake one feels with this
emotion. Dominance and memorability are also some common
dimensions in the literature.

Datasets for image aesthetics. Many datasets of images
with aesthetics annotations can be found [5, 10, 14, 15, 35,

, 45, 46, 48, 52, 53, 55]. We note that those works use
different taxonomies of annotations, e.g. categorical emotion
models, dimensional emotion models, memorability, dynamics
of image popularity, efc. We want to mention in particular
the TAPS (from 1997) [46] and the OASIS [10, 45] datasets
using a dimensional emotion model (valence, arousal, and
dominance), the Cornell Emotion6 [55] and the ArtEmis [5]
datasets using categorical emotion models, and the LaMem
dataset [42] for image memorability.

Predicting image aesthetics. Those datasets were used to
show that various aesthetics measures can be predicted using
hand-crafted features [48], traditional computer vision features
[35], low-level and high-level (CNN) features [4 1, 55], features
extracted by visual-textual deep-learning models [43], etc.

Engagement of videos. The works focusing on videos
usually refer to “engagement” indicating how much the viewer
is appealed/interested by the video, which we consider as a
dimension of the video aesthetics. The engagement of a video
depends on video content factors (duration, style, information,
etc.) and content-agnostic factors (upload time, popularity of

content creator, advertising budget, efc.) [79]. Most works
only focus on predicting the engagement induced by video
content factors. The engagement of videos is usually a short-
term engagement, derived using metrics as numbers of likes
and views, watch time, efc. Concerning advertisement videos
in particular, the study is more complex. For example, metrics
like the view count are biased by paid advertising on the video
hosting platform. Moreover, specific techniques are used in
advertisements: humor, surprise, cartoon/animated characters,
theme of the brand (colors, jingles, mascot characters), repe-
tition, etc.

B. Contributions of the paper

The main contribution of the work from Hussain et al. [2]
is the collection and annotation of datasets of advertisements.
Additionally, they perform some experiments for automatic
assessment tasks on those advertisements.

The construction of the advertisement datasets processes as
follow. They first manually collected a list of keywords related
to advertisements. They then used those keywords on search
engines to collect noisy datasets of possible advertisements.
They finally used Amazon Mechanical Turk to filter out the
images/videos that are not ads and to precisely annotate the
cleaned-up advertisements.

Collection of datasets. The authors shared the list of key-
words related to advertisements in a supplementary material.
It covers very broad topics (e.g. with the keywords “Food”
“Electronics” “Publics service announcements”), finer topics
(e.g. “Cookies” “Phones” “Domestic violence”), as well as
precise brands (e.g. “Oreo” ‘“Nokia”). They then use those
keywords on Google Images and on YouTube, collecting 190K
images and 5K videos of possible advertisements. They filtered
out duplicates and disregarded low-quality data by removing
videos with low view and like counts, as well as low-res
images and videos. Among those collected images/videos, an
important part is not actually advertisements. The clean-up of
those non-ads data is done at the same time as the annotation
procedure, asking the annotators whether it is an advertisement
or not. However, in order to save cost on annotations of
images, the authors trained a ads/non-ads classifier using a first
batch of annotations and then did not send to the annotators
the images classified as non-advertisement.

Annotations for datasets clean-up. The authors used
Amazon Mechanical Turk to get their data annotated. They
asked the annotators whether the image/video is indeed an
advertisement. This allows to clean-up the datasets of possible
advertisements, into datasets of confirmed advertisements.
The final datasets contain 65K images and 3.5K videos of
confirmed advertisements.

Aesthetics annotations. The authors asked the annota-
tors whether the advertisement is effective and if it is
funny/exciting (for videos only). Those annotations provide
an aesthetics measure of the advertisement (e.g. effectiveness).
However, aesthetics is also linked to the sentiments induced
in the viewer, which itself also partly relates to the topics of
the ads. The annotators had to select, for each advertisement,
one topic in a list of 38 topics, and at least one sentiment in



EDIC RESEARCH PROPOSAL

We CanDo It!

W,
FOR U.S.ARMY

NEAREST RECRUITING STATION
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Don't by exotic animal souvenirs - =3

Fig. 2. Five image advertisements. The analysis of those ads is not straight-
forward as it requires reading the texts “I want you for U.S. army - Nearest
recruiting station”, “We can do it! - War production coordinating committee”,
“Before it’s too late. - wwf.org”, “True colours’, “Don’t buy exotic animal
souvenirs”. It also requires understanding the body language in the second
ad, understanding that the pencil of the third ad will have an accurate color,
a natural color to draw for instance an eggplant, understanding that the shape
of lungs in the fourth ad symbolizes life through trees that turn carbon
dioxide into oxygen, understanding that the blood in the fifth ads represents
danger, injury and death, efc. Understanding all those concepts is required to
understand the ads and correctly predict the reaction it induced to the viewer.
Image source from the original paper with slight layout modification.

a list of 30. Those lists were obtained by clustering free-form
answers of a first batch of annotations (where annotators had to
type raw text instead of selecting among a list). Each image
is annotated by several annotators and the authors checked
the inter-annotator agreement. Annotations for message un-
derstanding were also collected, as motivated in figure 2. The
annotators had to say what should they do, according to this

ad, and why. For images only, they also had to label whether
the understanding of the ad is straightforward or require non-
literal interpretation (e.g. a gun might symbolize danger). In
the case of non-literal interpretation, annotators were asked to
describe the symbolism used in the advertisement (e.g. a gun
is represented and symbolizes a danger) and the strategies that
are used (e.g., references to cultural knowledge, use of humor,
use of surprise).

Assessing aesthetics with machine leaning models. By
analyzing the annotations, the authors found interesting rela-
tions between the topics of the ads and the induced emotions.
For instance they noted that “domestic abuse and human and
animal rights ads inspire disturbance and empathy”, which
makes a lot of sense. They then propose some baseline models
for various prediction tasks. First, giving the model the image
and the expected action, they aim to predict the answer
to the following question: Why should you do [expected
action] according to this ad? However, they showed low
performance for this task, showing that message understanding
is hard and complex. Secondly, they perform experiments
on detecting which symbols are used in non-straightforward
advertisements, with mitigated performances. Thirdly, they
show that detecting topics and sentiments seems easier than
the two previous experiments. Finally, in their last experiment,
they show that they can reach good performance at predicting
if a video advertisement is funny and if it is exciting.

C. Discussion

Alternatives to data annotations. Hussain er al. used
human annotators to annotate their data. This was necessary as
they wanted to focus specifically on message understanding,
with some specific annotations such as What should you do
according to the ad and why? or Which symbolisms are
used in the ad?. However, there are other ways to collect
ground-truth aesthetics annotations for videos. First, several
existing studies on video engagement [13, 80] use metrics
from video hosting platforms, as likes/dislikes/views count
or watch time. This directly provides free annotation of the
aesthetics/popularity/appeal of the video. Other works [7, 54]
use more advanced tools (logs of HTTP requests and browser
extension) to collect data such as the skip duration of the ad,
the total session watch time, etc. Several works [0, 9, 77] also
use electroencephalography (EEG) to study the engagement
of video advertisements. Finally, cameras can also be used,
for instance with eye tracking, subject tracking, or emotion
recognition, to assess how engaged the viewers are and which
emotions they feel.

Features to predict video aesthetics. The work from
Hussain et al. proposes several baseline methods for predictive
tasks, including predict how exciting/funny a video advertise-
ment is. In this paragraph we mention some features that relate
to the aesthetics/engagement of video. First, the advertisement
creativity, originality and relevance impact its success [49,
64]. The video duration and pace have an influence on video
engagement [79]-[90, 91]. Existing works use various features
for this engagement prediction task: the video title, tags,
description, category, and age [23, 47], the video topics [80],
and the engagement of existing similar videos [16].
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IV. LEVERAGING GENERATIVE MODELS FOR AESTHETICS

In this section, we discuss the work by Goetschalckx et
al. [1]. They propose a framework, GANalyze, to leverage
generative models and aesthetics assessment models.

A. Problem statement and background

The authors of GANalyze aim to study and represent
visually some aesthetics measures (memorability, beauty, va-
lence). Indeed those aesthetics measures do not have concrete
and explicit definition. Hence, it is interesting to represent
them visually, to get understanding of what those aesthetics
measures actually are.

Using generative models for art generation. While the
authors describe GANalyze as a framework to study visual
definition of various aesthetics image assessments (memora-
bility, beauty, valence), we point out that it can simply be used
to make the generative models generate aesthetically pleasant
images (and eventually aesthetically pleasant videos). More-
over, when combined with GAN inversion, this framework can
lead to aesthetics-oriented image editing, by taking an image
and making it more aesthetic.

Using generative models for art generation is not new how-
ever. Indeed in 2015, Google proposed a method, DeepDream
[93], to visualize and try to understand the mechanisms and
patterns learned by artificial neural network. It was often
described as letting the deep neural network “dream”, hence
the name DeepDream. The images generated by DeepDream
have an interesting psychedelic/hallucinogenic appearance and
therefore could be considered as Al-generated art images.
People wanting to generate art with Al also use style transfer
to mix the content of an image with the style of an art piece
[28]. Moreover, several works train a GAN on art datasets in
order to generate new art. Creative Adversarial Network [22],
for instance, did so, but in addition, they added a “stylistic
ambiguity” term so that the generated art does not simply
copy art, but generate new art that does not match existing art
styles.

Semantics in latent spaces. Traditionally, deep neural
networks are seen as black boxes, with hidden layers whose
exact roles are hard to explain. However, some models such
as VAEs are known to have better disentanglement than other
models inside their latent space [50]. This makes the latent
spaces easier to understand, to interpret, and to manipulate.

Several works, such as semantic face editing [82], aim at
manipulating those latent spaces in a semantically-meaningful
manner, in order to for instance modify one property of
a generated face (e.g. suppressing the facial expression) or
interpolate between two images.

B. Contributions of the paper

Proposed framework. The proposed framework, GANa-
lyze, is relatively simple. It is represented schematically in
the figure 3.

They learn a direction € in a latent space. Moving in the
direction @ in the latent space should increase the aesthetics
measure of the decoded image, proportionally to the distance
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Fig. 3.  Schema of the GANalyze framework proposed by Goetschalckx er
al. Image source from the original paper with slight layout modification.

we moved. Similarly, moving in the opposite direction —6
should decrease the aesthetics measure.

Their framework requires two trained models whose weights
will not change during the optimization of #. The first model
is a differentiable generative model, which generates images
G(z) from points z of a latent space. The second model is
a differentiable model that assesses some aesthetics measure
A(i) of images 4, such as their memorability or their emotion.
As the relation from latent space points z to aesthetics mea-
surements A(G(z)) is differentiable, the framework can use
the standard Adam optimizer.

At each iteration/sample of the training, a point z in the
latent space and a small value « are drawn randomly. The MSE
cost ((A(G(z + af))) — (A(G(2)) + a))? is used to take an
optimization step for 6.

Performance vs realism. The authors of GANalyze showed
by some automatic measures and human evaluation that the
realness of the generated images is not much impacted by a.
In other words, if we use their framework in order to generate
only aesthetically pleasing images, then the generated images
will still look as realistic as the one coming from the initial
image generator.

Similarly, they checked numerically and through a visual
memory game experiment that the aesthetics measure indeed
increases with a.

Emerging factors. The authors mentioned that object
size, subject centeredness, circleness over squareness, redness,
brightness, image simplification (low number of objects) and
colorfulness are emerging factors that appear when increasing
the aesthetics of an image (memorability in this particular
case).

C. Discussion

From images to videos. The paper itself focuses on images.
However, their framework can be used with any GAN gener-
ator and aesthetics assessor that are compatible. Especially, it
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would be, in theory, possible to apply the GANalyze frame-
work (section IV) to the video generator from TSGAN (section
II) and the funny/exciting/sentiments prediction models for
videos from Hussain et al. (section III), thus linking the three
discussed papers together. While this would be computation-
ally very intensive (and not recommended), this is possible
from a theoretical perspective and would be one solution to
achieve aesthetics-oriented video generation and editing. In
section V, we discuss our current plan for aesthetics-oriented
video generation and editing.

Leveraging generative models for aesthetics with text-to-
image models. Text-driven image generation/editing models
[25, 27, 58, 59, 60, 61, 83]-[86] can also be used to generate
images with specific aesthetics. Adding words (modifiers)
in the text query such as “unreal engine”, “hyperrealistic”
or “photorealist” appears to produce more pleasant images.
Similarly, aesthetics/emotions related modifiers can be used,
e.g. “calm”, “happy”, “angry”, “depressed” in AffectGAN
[26].

V. RESEARCH PROPOSAL

In our first semester project we conducted an investigation
into computational aesthetics. Our literature review and exper-
iments covered important related topics such as emotion mod-
els, relevant low-level and high-level features, image emotions,
aesthetics prediction, aesthetics-oriented image manipulation,
and some emotion image datasets suitable for studying compu-
tational aesthetics. We have also performed preliminary exper-
iments for a framework that should allow to visualize various
emotion models (categorical and/or dimensional) and various
emotion datasets in a shared 2D representation, similarly to
Plutchik’s wheel of emotions.

Most computational aesthetics works focus until now on
the dominant feeling/emotion or on tasks that naturally are
group-effect, e.g. popularity of videos assessed with the num-
ber of views. There are to our knowledge not many works
and datasets targeting the aesthetics assessment of a specific
population group or a specific individual, e.g. taking into
account the past experiences of one individual to predict its
reactions to an image. However it is of interest: especially for
advertisements/movies we could focus on the aesthetics tastes
of the targeted population. This might be studied in our future
research as well.

In our second semester project, we handled the problem of
estimating the engagement that advertisements videos reach
online. We collect the videos of a Swiss company on YouTube
and analyze the engagement (likes and views) of those videos
by looking at features such as the duration of the video and
the level of drama in the video. We train an engagement-
prediction model on this new data and use it to find points in
an interpretable feature space corresponding to new possible
high-engaging commercials.

As following work of our second semester project, our
current research focus on automatic generation of advertise-
ments videos from these points of the interpretable feature
space. Instead of directly generating videos, we are working
on a two-stage process, firstly generating the corresponding

script/screenplay and in a second stage, we will focus more
on script-to-video generation. This two-stage process seems
simpler and more effective to us. It also allows to have a
human in the loop, modifying a few parts of the generated
script if required, which is simpler than editing the video after-
wise. Especially, we have started to leverage text generation
NLP models for generation of scripts of advertisements. Due
to the lack of datasets of advertisements scripts, our current
experiments aim to fine-tune those text-generation models on
both movies plot summaries and voice-overs of advertise-
ments. To generate videos from the generated scripts, our plan
is to leverage text-to-image generation models. More precisely,
we plan, as a first prototype, to feed a text-to-image model
with the sentences of the generated script one after the other.
One other direction we will study shortly is the classification
of videos into ads/non-ads. Firstly, it would allow us to take
any dataset of videos and filter only the videos that look like
advertisements. Secondly, it could also be useful in latter work
in order to make a video look more like an advertisement, e.g.
in combination of frameworks similar to GANalyze if possible.
Our future research will also be heavily influenced by the
advancements in the related challenges described in sections
IL, III and IV. Especially, many very recent works (CLIP [57],
all the text-to-image models, CogVideo [33] for text-to-video)
have shown progress that has major impact on our topic of
aesthetics-oriented video generation and editing.
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